Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS Negl Trop Dis ; 14(10): e0008789, 2020 10.
Article in English | MEDLINE | ID: covidwho-1765527

ABSTRACT

During the last century, emerging diseases have increased in number, posing a severe threat for human health. Zoonoses, in particular, represent the 60% of emerging diseases, and are a big challenge for public health due to the complexity of their dynamics. Mathematical models, by allowing an a priori analysis of dynamic systems and the simulation of different scenarios at once, may represent an efficient tool for the determination of factors and phenomena involved in zoonotic infection cycles, but are often underexploited in public health. In this context, we developed a deterministic mathematical model to compare the efficacy of different intervention strategies aimed at reducing environmental contamination by macroparasites, using raccoons (Procyon lotor) and their zoonotic parasite Bayilsascaris procyonis as a model system. The three intervention strategies simulated are raccoon depopulation, anthelmintic treatment of raccoons and faeces removal. Our results show that all these strategies are able to eliminate the parasite egg population from the environment, but they are effective only above specific threshold coverages. Host removal and anthelmintic treatment showed the fastest results in eliminating the egg population, but anthelmintic treatment requires a higher effort to reach an effective result compared to host removal. Our simulations show that mathematical models can help to shed light on the dynamics of communicable infectious diseases, and give specific guidelines to contain B. procyonis environmental contamination in native, as well as in new, areas of parasite emergence. In particular, the present study highlights that identifying in advance the appropriate treatment coverage is fundamental to achieve the desired results, allowing for the implementation of cost- and time-effective intervention strategies.


Subject(s)
Models, Theoretical , Parasitic Diseases/prevention & control , Zoonoses/prevention & control , Animals , Humans , Parasites/physiology , Parasitic Diseases/parasitology , Parasitic Diseases/transmission , Public Health , Zoonoses/parasitology , Zoonoses/transmission
2.
3.
Parasitology ; 148(3): 274-288, 2021 03.
Article in English | MEDLINE | ID: covidwho-1087391

ABSTRACT

An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.


Subject(s)
Host-Parasite Interactions , Parasites/physiology , Parasitic Diseases, Animal/epidemiology , Social Behavior , Animals , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL